skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Rau, Ileana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rau, Ileana; Sugihara, Okihiro; Shensky, William M (Ed.)
    Low-energy, infrared (IR) photodetection forms the foundation for industrial, scientific, energy, medical, and defense applications. State-of-the-art technologies suffer from limited modularity, intrinsic fragility, high-power consumption, require cooling, and are largely incompatible with integrated circuit technologies. Conjugated polymers offer low-cost and scalable fabrication, solution processability, room temperature operation, and other attributes that are not available using current technologies. Here, we demonstrate new materials and device paradigms that enable an understanding of emergent light-matter interactions and optical to electrical transduction of IR light. Photodiodes show a response to 2.0 μm, while photoconductors respond across the near- to long-wave infrared (1–14 µm). Fundamental investigations of polymer and device physics have resulted in improving performance to levels now matching commercial inorganic detectors. This is the longest wavelength light detected for organic materials and the performance exceeds graphene at longer wavelengths. Photoconductors outperform their inorganic counterparts and operate at room temperature with higher response speeds. 
    more » « less
  2. Rau, Ileana; Sugihara, Okihiro; Shensky, William M (Ed.)
  3. Rau, Ileana; Sugihara, Okihiro; Shensky, William M. (Ed.)
  4. Rau, Ileana; Sugihara, Okihiro; Shensky, William M. (Ed.)
    Hybrid organic electro-optic (OEO) modulators consist of a layer of ordered organic chromophores confined between layers of metals or semiconductors, enabling optical fields to be tightly confined within the OEO material. The combination of tight confinement with the high electro-optic (EO) performance of state-of-the-art OEO materials enables extraordinary EO modulation performance in silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) device architectures. Recent records in POH devices include bandwidths >500 GHz and energy efficiency <100 aJ/bit. To enable commercial applications of these materials and devices, however, they must withstand demanding thermal and environmental conditions, both during manufacture and operation. To address these concerns, we examined the long-term thermal and environmental shelf storage stability of state-of-the-art commercial and developmental OEO materials under a variety of conditions relevant to Telecordia GR-468-CORE standards. We examined the shelf storage of poled OEO materials under a nitrogen atmosphere at a range of temperatures from 85 ̊C up to 150 ̊C to understand the kinetics of the thermally activated de-poling of the OEO materials. We also examined the shelf storage of OEO materials under a variety of atmospheres, including the aggressive 85 ̊C and 85% relative humidity damp heat condition, to understand the relative sensitivities of the materials to water and oxygen at different temperatures. We analyze the results of these studies and discuss their implications for commercial application of these materials and devices, including manufacturing, encapsulation requirements, and expected operational lifetimes. 
    more » « less